Projection Pursuit Multivariate Transform

نویسندگان

  • Ryan M. Barnett
  • John G. Manchuk
چکیده

Transforming complex multivariate geological data to be multivariate Gaussian is an important and challenging problem in geostatistics. A variety of transforms are available to accomplish this goal, but may struggle with data sets of high dimensional and sample sizes. Projection Pursuit Density Estimation (PPDE) is a well-established non-parametric method for estimating the joint PDF of multivariate data. A central component of the PPDE algorithm involves the transformation of the original data towards a multivariate Gaussian distribution. Rather than use the PPDE for its original intended purpose of density estimation, this convenient data transformation will be utilized to map complex data to a multivariate Gaussian distribution within a geostatistical modeling context. This approach is proposed as the Projection Pursuit Multivariate Transform (PPMT), which shows the potential to be very effective on data sets with a large number of dimensions. The PPMT algorithm is presented along with considerations and case studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting multivariate outliers using projection pursuit with particle swarm optimization

Detecting outliers in the context of multivariate data is known as an important but difficult task and there already exist several detection methods. Most of the proposed methods are based either on the Mahalanobis distance of the observations to the center of the distribution or on a projection pursuit (PP) approach. In the present paper we focus on the one-dimensional PP approach which may be...

متن کامل

A Characterization of Principal Components for Projection Pursuit

Principal Component Analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of \interestingness" over all proje...

متن کامل

Robust Multivariate Methods: The Projection Pursuit Approach

Projection pursuit was originally introduced to identify structures in multivariate data clouds (Huber, 1985). The idea of projecting data to a lowdimensional subspace can also be applied to multivariate statistical methods. The robustness of the methods can be achieved by applying robust estimators to the lower-dimensional space. Robust estimation in high dimensions can thus be avoided which u...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Entropy in Multivariate Analysis: Projection Pursuit

Projection pursuit is an exploratory data-analytic method in multivariate (MV) analysis. It is similar to the well-known principal components analysis (PCA) in that it can be used to nd interesting structure within a MV data set. However, unlike PCA, which nds linear projections of maximum variance, projection pursuit nds linear projections of maximum non-normality, which sometimes is better at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012